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Abstract

Jakob Steiner and Karl Weierstrass provided formal proofs of the isoperimetric property

of the circle in the late 1830s. New mathematical tools, proof language, and concepts were

needed to prove this rather obvious fact, that of all regions with a given perimeter the circle,

and only the circle, has maximum area. We examine the historical context of the isoperimetric

property, the proofs of Steiner and Weierstrass, and subsequent proofs using alternate methods.

A comprehensive history and applications of the isoperimetric problem are presented. Several

exercises are posed and solved using the isoperimetric property, relying heavily on methods

used by Richard Demar in 1975.
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Chapter 1

A summary of seven proofs concerning variants of the isoperimetric property of the circle

The proof, the whole proof, and nothing but the proof. When

it comes to mathematics that’s the only thing that matters.

Włodzimierz Kuperberg

Theorem 1. Among all regions of given perimeter, the circle has maximum area.

1.1 Jakob Steiner

First we call in the proposition that the isosceles triangle has the smallest leg-sum compared

to triangles of the same baseline and either height or area, and vice-versa. Given an unequal

triangle, transforms it to an isosceles triangle of the same baseline and height. The result is a

triangle with a smaller leg-sum, and therefore a smaller perimeter, containing the same area.

A B

C

a b

c

Figure 1.1.0.1: Maximum area triangles must be isosceles

We extend the principle above to show that every parallel trapezoid which does not have

equal angles on one or the other baselines can be transformed into another of the same area
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and baselines; moreover, the new side lengths will have a smaller sum and the new parallel

trapezoid has symmetry along the axis formed by the midpoints of the baselines.

In the figure below, the parallel trapezoid ADBE has the property that there are no equal

angles on the baseline AB and DE. The parallel trapezoid adeb is the transformation of

ADEB such that |AB| = |ab| and |DE| = |de| as well as symmetry across the axis X formed

by the midpoint of de, h, and the midpoint of ab, m.

A B

C

D E

a b

c

d eh

m

X

Figure 1.1.0.2: Maximum area parallel trapezoids must be symmetric

This follows directly from the previous assertion using properties of similar triangles,

with the parallel trapezoids being contained within their respective triangles. The result is a

new parallel trapezoid with a smaller perimeter and the same area than that of the original.

Thus, any arbitrary convex polygon V can be transformed into another polygon V1 with

smaller perimeter and the same area with respect to any one axis of symmetry. Examples

follow.

Example 1.1.1. Given a triangle ABC, transform it into triangle abc and reflect along ac such

that |BD| = |bd| as shown below. The resulting tetragon abcd has a smaller perimeter and the

same area as △ABC.

2



A

B

C

D

a

b

c

d

Figure 1.1.1.1: A triangle and a tetragon of the same area where the tetragon has smaller
perimeter

Example 1.1.2. Using Example 1, label the line ac as axis Y . Create a new axis, X , perpen-

dicular to axis Y and label the intersection of the axes as µ. The tetragon abcd is transformed

into a square αβγδ, having the same area but smaller perimeter. Moreover, αβγδ is symmetric

about axes X and Y thus a rhombus with center µ. Therefore, any arbitrary triangle ABC is

transformed into a rhombus αβγδ of the same area but smaller perimeter.

A

B

C

D

a

b

c

d

α

β

γ

δµ

Y

X

Figure 1.1.2.1: Transform the tetragon into a rhombus with the same area and a smaller perime-
ter
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Example 1.1.3. Transform a hexagon into a symmetrical decagon according to the principles

above. The resulting decagon is symmetric across one axis, has a smaller perimeter, and the

same area as the hexagon.

If one were to apply the symmetry across a second, perpendicular axis, the resulting hex-

adecagon has the properties of the same area, smaller perimeter, and 2 lines of symmetry;

moreover, the intersection of the perpendicular lines of symmetry (axes) is the center of the

hexadecagon.

A

B

C

D

E

F

B’

C’

E’

F’

a

b

f’

c

e’

d

e

c’

f

b’

Figure 1.1.3.1: Transform a hexagon into a decagon with the same area and smaller perimeter

Example 1.1.4. Using the principles above, any given polygon V with any number n edges

can be transformed using an axis X1 into a symmetric polygon of the same area and smaller

perimeter with at most 2n− 2 edges. Repeating the process to obtain the kth arbitrary axis Xk

results in a polygon Vk, with a maximum number of edges ek = 2k(n− 2) + 2, the same area,

and a smaller perimeter than any of the previous Vi.

If one picks X2 to be perpendicular to X1 then V2 has its center at their intersection point

M with two axes of symmetry, but at most 2(2n − 4) edges. Moreover, every subsequent

polygon V3, V4, . . . , Vk maintains its center point at M regardless whether any subsequent axes

are mutually perpendicular.
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We see that by following the iterative process described above we can transform any given

polygon V into another polygon Vx with the same area and smaller perimeter with no limit

to the number of edges. If the number of edges is large, perhaps infinitely large, and the

perimeter shrinks, each edge becomes infinitely small. Therefore, the perimeter of the polygon

Vx becomes, instead, a curve.

Conversely, we can imagine a given closed curve V as a polygon with infinitely many

and infinitely small edges. Then this curve can be transformed via an arbitrary axis to another

curve V1 of the same area and smaller perimeter, and transformed again via a second axis

perpendicular to the first yielding a curve V2 with smaller perimeter than V1, the same area, and

mutually perpendicular axes of symmetry with center point M .

Repeating this process results in subsequent curves of the same area, each with a smaller

perimeter than the one before. The diameters of the curve approach equality, quickly so if each

arbitrary axis is selected to enlarge the smallest diameter and shrink the largest.

Therefore, every closed convex figure V - with straight or curved edges - can be trans-

formed to yield a smaller perimeter containing the same area, until the figure has symmetrical

axes in all directions. When this is the case, further transformations result in congruent shapes.

However, the shape has the center point M where all axes intersect and all diameters are equal:

namely, a circle. [14][15]

1.2 Karl Weierstrass

Relying on variational calculus, this proof defines area and length in terms of integrals. The

result is two Euler-Lagrange equations which, when solved, provide an equation in the form of

a circle and the length of the radius which optimizes the area given the length of the perimeter.

[5]
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1.3 Erhard Schmidt

Beginning with parameterised curves, a circle is defined using carefully selected intervals and

bounding. Using advanced calculus, isoperimetric equality is obtained if all calculated isoperi-

metric inequality statements are equalities. [8]

1.4 Vladimir Boltjanski

Boltjanski[3] provides a summary of Steiner’s isoperimetric proof. He begins with proving that

the maximum area shape must be convex.

Figure 1.4.1: Solution must be convex

He moves on to a general shape. He makes a ”cross-cut” that divides the boundary into

two equal lengths. If every cross-cut has equal area then the shape is extremal. Otherwise, omit

the side with smaller area and reflect the side with larger area across the cross-cut. We may

continue in this way until every cross-cut has equal area.

Figure 1.4.2: A chord which bisects the perimeter

Now he takes a fixed cross-cut, a, b, and any boundary point distinct from a and b, c, and

demonstrates that the extremal must have ∠acb equal to 90◦. If the angle is anything else, install

6



a hinge and rotate about c until the angle measure of acb is 90◦. This does not change the area

between △abc and the boundary of the shape but it does increase the area of △abc.

Figure 1.4.3: Install a hinge Figure 1.4.4: Rotate about c

Then, reflect over the cross-cut to achieve a shape with greater area and same perimeter.

Figure 1.4.5: Reflect the cross-cut

1.5 Richard Demar

Demar begins with an indirect proof to show that the extremal is convex, then proceeds with

a trivial example that the square is not extremal. While the square example is trivial and can

easily be proved computationally, the trick Demar uses here will be used in subsequent proofs

and is illustrated in Figures 1.5.1, 1.5.2, and 1.5.3.

7



D C

BA

B

Figure 1.5.1: Square

D C

BA E

F

F ′ E ′

B′

Figure 1.5.2: Replace

B

A

Figure 1.5.3: Nonconvex

Theorem 2. Among all n-sided polygons of perimeter p, the regular n-gon has maximum area.

Demar begins by showing that the solution is equilateral using an indirect method. Using

reflections and replacements, which preserve length and area, he achieves a shape which is not

convex. Therefore, the extremal must be equilateral.

The indirect approach is also used to show equiangularity. Using reflections and replace-

ments, the shape is not convex, so the extremal must be equiangular.

As the n-gon must be both equilateral and equiangular, it is regular.

Theorem 3. Among all plane regions of perimeter p, a circular region has maximal area.

Let R be a region of maximum area among all regions of perimeter length p. Let γ be the

boundary of R. Since R must be convex, there is a dense set of points on γ at each of which γ

has a tangent. Let A and B be any two points of this dense set such that the tangents at A and

B are not parallel. Let C denote their point of intersection.

The measures of ∠CAB = ∠C ′BA is shown by contradiction, using the property that

reflection preserves area and length.

8



A

BC

C ′

D

Figure 1.5.4: Reflect and replace to get a nonconvex region

It is shown that region is a circle by constructing perpendiculars to tangents and resulting

with △FGH being degenerate.

B

A

E

GF

H

Figure 1.5.5: Proof of the fact that points F,G,H coincide

This proof relies on reflection and replacement principles, a trick which was demonstrated

on the square (see Figs. 1.5.1, 1.5.2, 1.5.3). Each of the triangles formed by two points together

with the intersection of their tangents lines produces an isosceles triangle, resulting in the tri-

angle FGH being degenerate. Thus, F = G = H , and points A,B,E are equidistant from

this point he calls G.

9



Finally, it is noted that every point on γ which has a tangent is also this same distance

from G. As γ is continuous, all points on γ are equidistant from G, except finitely many with

no tangent. He uses integral calculus to show that there are zero points without a tangent, and

γ is a circle.

Theorem 4. Let T be a given triangular region with perimeter P and with a circumference

of the inscribed circle equal to c. Let p be a number such that c ≤ p ≤ P . Then among all

regions contained in T and having perimeter p, the region R of maximum area has boundary γ

consisting of three circular arcs all of the same radius, each tangent to two adjacent sides of the

boundary of T , together with the three segments of sides of T between endpoints of these arcs.

First, Demar cites the previous theorem to indicate that γ contains at least one circular

arc. Using an indirect proof, he then shows that none of the vertices of T can coincide with γ,

meaning, γ contains three circular arcs. This is achieved using replacement of a small corner

piece at C and a small sector of the arc near B (see Fig. 1.5.6), which preserves length and area

but creates a nonconvex region.

Figure 1.5.6: Replace a small corner with
a small sector, and vice-versa

Figure 1.5.7: Replace two small sectors
with each other

To show that each of the three arcs have equal radii, Demar again uses an indirect proof

method. When the extremal is assumed to have different radii, using replacement of small

sectors (see Fig. 1.5.7), a non-convex shape is achieved, implying that the radii are equal.

Lastly, to show that each of the circular arcs of γ is tangent to T , and indirect approach is

used. Reflections and replacements yield a γ′ which is not convex, hence, the arcs are tangent

to T (see Fig. 1.5.8). [4]
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Figure 1.5.8: Drawing a tangent to the arc,
segments on AB, and triangles from AB
to the point of tangency resulting in a con-
tradiction such that the point of tangency
touches BC

Figure 1.5.9: Zoomed in view where the
arc is reflected and replaced resulting in a
nonconvex region

Figure 1.5.10: The maximum area solution

This work by Demar will be referenced heavily in exercises later on.

1.6 Alfred D. Garvin

Expanding on the work of Demar, physical experiments are performed to prove the statements.

First, liquid mercury is slowly poured into a confined triangular reservoir and is expected to take

on an isoperimetrically optimal configuration, which it does. However, the meniscus effect of

the mercury slightly skews the endpoints of the arcs.

Next, the reservoir is partially filled with water. A viscous oil is poured slowly onto the

water and is expected to take on an isoperimetrically optimal shape, which it does. Again, the

meniscus effect of the oil slightly skews the endpoits of the arcs.

The third experiment uses a flexible, asymmetrical triangular wood fence and a sturdy-

paper closed fence with perimeter less than that of the triangle. BB pellets are poured inside

11



the paper fence, which is expected to take on an isoperimetrically optimal shape, which it does.

This internal-pressure experiment does not yield any skewed results.

The three experiments yield the same description of the isoperimetrically optimal shape:

the arcs have equal radii, the arcs have equal chords, and the arcs have equal length. [6]

1.7 David Singmaster and D. J. Souppouris

A conjecture both deep and profound

Is whether a circle is round.

In a paper of Erdős

Written in Kurdish

A counterexample is found.

Leo Moser[1]

The ratio of area to perimeter, A/P , is examined to find the set which produces the greatest

number. Using advanced calculus and analysis, the maximal ratio of A/P is a measure of the

circularity of the set. [13]

1.8 Gary Lawlor

A new proof of the planar isoperimetric property is presented. The method is a slicing and

covering argument, and calls for strategically dividing the circle as well as another, arbitrary

region of equal perimeter, into tiny pieces. Each pieces from non-circle region contains the

same length of the region’s boundary and has less area than the piece of the circle containing

the same length of the circle’s boundary. An advantage of this proof is, as it is comparative, it

does not require a proof of existence of an optimum solution. [10]
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Chapter 2

Some historical facts and remarks on geometry prior to proving the isoperimetric property of
the circle

The story so far: In the beginning the Universe was created. This has

made a lot of people very angry and been widely regarded as a bad move.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

The isoperimetric property of the circle is a fact that has been known for millennia but

was only proven around 150 years ago, and shortly thereafter an addendum was made to satisfy

the proof as being rigorous. This proof by Steiner is purely geometrical in nature, not relying

on analysis; however, Weierstass’s addendum required analysis to satisfy the proof as being

rigorous. Subsequent proofs have been published that rely on other methods.

Many of the texts on the isoperimetric property of the circle begin with anecdotes about

the ancient Greeks; they knew that the circle was the shape with maximum area for a fixed

perimeter but were unable to prove it mathematically. However, it was an obvious enough

property that they accepted it as fact without proof.

2.1 Thales

Thales of Miletus was a Greek mathematician, among other scholarly activities, living in Mile-

tus in Ionia, Asia Minor. He is recognized as the first philosopher and the first actual mathe-

matician, framing the logical structure of geometry. Also attributed to Thales is that, in 585

BCE, he was the first person to have predicted a solar eclipse. He was well-situated to travel to

13



Egypt, where he learned mathematics, and to Babylon, where he learned astronomy. There are

five major theorems in geometry Thales is said to have proved:

1. A circle is bisected by a diameter.

2. The base angles of an isosceles triangle are equal.

3. The pairs of vertical angles formed by two intersecting lines are equal.

4. If two triangles are such that two angles and a side of one are equal, respectively, to two

angles and a side of the other, then the triangles are congruent.

5. An angle inscribed across a circle’s diameter is always a right angle.

No documents survive to verify that Thales himself accomplished this, but the unwavering

mythology of his achievements survive.

Claims that Thales was the first mathematician are attributed to Proclus, who lived from

410-485 CE, at the beginning of his work Commentary on the First Book of Euclid’s Elements.

Whether Thales proved these theorems or codified the demonstration of theorems is uncertain,

but he is the first person historically credited with these mathematical discoveries. [11] The

five theorems listed above paved the way for the discovery of the isoperimetric property of the

circle.

2.2 Pythagoras

Pythagoras came roughly 50 years after Thales. Their mathematical interests were similar,

likely because Pythagoras also traveled to Babylon and Egypt - as well as India. He became not

only a mathematician but also a religious figure, finding himself among contemporaries such as

Confucius, Buddha, and Lao-tzu. Upon return from his travels he established a secret society,

the Pythagoreans, which studied mathematics and philosophy, subjects which were inextricably

linked. Due to the communal nature of this society, ideas attributed to Pythagoras arose from

the Pythagoreans as a collective with the exact author unknown. They viewed mathematics as

a love of wisdom, and their motto was ”All is number.” [11]

...

14



2.3 Zeno

Zenodorus (not to be confused with Zeno of Elea, famed for his paradoxes) lived from around

200 BCE to 120 BCE. His work On isometric figures was lost but is referenced so often that

we know he proved the following:

• The regular polygon with most angles has the greatest area.

• The circle has greater area than any regular polygon of equal perimeter.

• The equilateral and equiangular (i.e., regular) polygon has the greatest area of any poly-

gon with the same perimeter and number of sides.

He theorized that the circle is the solution to the isoperimetric problem in two dimensions and

that the sphere is the solution in three dimensions. [5]

2.4 Thucydides

Thucydides lived around 100 BCE. He used the time needed to circumnavigate a city to deter-

mine its area, and determined the size of Sicily by the amount of time it takes to sail around

it. He and other geometers of his time were mocked for measuring area according to perime-

ter. Additionally, it was uncommon that a person of that time knew that shapes of the same

perimeter could have different areas and unfortunately, some people cheated others out of land

because of this misbelief. [5]

2.5 Queen Dido

Queen Dido is a mythical figure who is most commonly remembered, in mathematics, by an

anecdote in Virgil’s Æneid. She had been a Phœnecian queen in the city of Tyre (in present

day Lebanon) and fled to present day Tunisia. The Berber king Iarbas allowed her to stay and

would give her as much land as she could bound with an ox’s hide. She cut the hide into very

thin strips, sewed them together, and outlined a perimeter shaped like a semicircle, using the

flat and straight coastline as the remaining boundary. This provided her the greatest area of
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land, based on the isoperimetric property of the circle and the bound provided by the sea. This

area that she bounded became the city of Carthage. [16]

2.5.1 Dido’s Problem

There are many statements of “Dido’s Problem,” some of which are listed below:

• Find the figure bounded by a line which has the maximum area for a given perimeter.

The solution is a semicircle.

a region of the maximal area bounded by a straight line and a curvilinear arc whose

endpoints belong to that line.

A family of segments

• Let E be a collection of finite line segments located in R2 . A formal definition of the

area enclosed by E is as follows. Let U be the union of the bounded components of

R2\E. Let W be the closure of the point set defined by U . Define the area of to be the

area enclosed by W be the closure of the point set defined by E.

2.6 Pappus

Bees . . . by virtue of a certain geometrical forethought . . . know that the hexagon is greater than

the square and the triangle and will hold more honey for the same expenditure of material.

Pappus of Alexandria

Pappus of Alexandria published his seminal work, Collection (or Synagogue), around 320 CE,

containing eight books; all of book one and half of book two are lost. Of note is book five, an

extensive treatise on bees. He noted that bees have some degree of mathematical understanding

as their cells are hexagonal prisms. Later in the book he concerns himself with problems

of isoperimetry, going so far as to demonstrate the the circle has the largest area for a given

perimeter, and it is from this book that we know of Zenodorus’s On isometric figures. [11]
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2.7 Duke Hengist

In the 5th century, German Duke Hengist offered himself to military service under King Vor-

tigern in exchange for, much like Queen Dido, the land he could enclose with a bull’s hide.

He established the castle of Kaercorrei with this land, again parallel to the mythology of Dido.

[12]

2.8 Dirichlet’s principle

Dirichlet was a German mathematics professor, teaching the likes of Riemann, Dedekind, Kro-

necker, and Eisenstein, among others. His academic advisors were Poisson, Fourier, and Gauss.

His contributions were in the fields of number theory, the theory of Fourier series, and analysis.

He is credited as being one of the first mathematicians to give a formal definition of a function.

[11]

While Dirichlet’s principle states that, loosely speaking, if a function is finite then it has

a minimum or maximum. Riemann named and popularized the Dirichlet Principle in the field

of complex analysis. Steiner famously did not prove the existence of a maximum area figure in

his proof of the isoperimetric property of the circle, as noted by Weierstrass, and assumed that

such a figure does exist and that figure is the circle.

2.9 Steiner

Unfortunately, [Lhulier’s] work seems to have been quoted more often than the prevailing

method has been correctly understood or duly appreciated and followed; for all his

successors have deviated more or less from his simple, natural way of looking at things.

Jacob Steiner[14]

Jacob Steiner was the first mathematician known to present a proof of the isoperimetric

property of the circle. His paper was first published in Crelle’s Journal in 1836. The quote

from Steiner, above, foreshadows the way that Steiner’s work has been discussed and similarly

misunderstood.
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Steiner was a Swiss mathematician, although he did not learn to write until he was 14

years of age. He began school in Heidelberg in 1818 where he was noted for his mathematical

abilities, and he began tutoring mathematics in 1821; shortly thereafter he was appointed as

a teacher in the Gewerbeakademi (trade academy). Along with Abel, he founded Crelle’s

Journal, where the two were leading contributors. His particular field of study became known

as synthetic geometry, or axiomatic geometry, or pure geometry; the study of geometry without

the use of coordinates or formulae, relying instead on the axiomatic method and tools directly

related to them (the compass and straight-edge). He did not rely on analysis or calculus for any

of his works or proofs. [11]

2.10 Weierstrass

Karl Weierstrass was the first to state openly that Steiner’s proof of the isoperimetric property

of the circle was flawed. Steiner relied on the existence of a maximal area region, and given

that this region exists then the circle is the shape with maximal area. Weierstrass added the

missing piece to Steiner’s proof, showing that a region of maximal area in fact exists for a fixed

perimeter; this part of the proof relies on modern mathematics and the notions of limits and

compactness, and not in an elementary way.

The Steiner proof relied only on geometrical methods to prove the isoperimetric property

of the circle, assuming a solution exists; Weierstrass used advanced calculus to rigorously finish

Steiner’s proof showing the existence of a solution. Subsequent mathematicians have published

alternate proofs of Steiner’s isoperimetric property using other analytical means.

2.11 Demar

Richard Demar and Alfred Garvin exchanged ideas regarding a new proof of the isoperimet-

ric problem. Garvin performed several experiments and made notes that supported Demar’s

hypothesis by observation; namely, that when a region is bound inside a triangle, it achieves

maximal area when it touches the sides of the triangle and has caps, each of equal radius, which

are tangent to the edges of the triangle.
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2.12 Lawlor

Gary Lawlor presented a thoroughly different proof of the isoperimetric property, using slices

of a circle and an arbitrary region, having the same perimeter. By slicing the circle and the

region into a covering of triangles, Lawlor showed that there is not a region more optimal than

the circle.
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Chapter 3

Applications of the isoperimetric property

The circle is the most simple, and the most perfect figure.

Dante

3.1 More from Steiner

An application of Steiner’s treatise, Geometrical constructions with a ruler, given a fixed circle

with its center, is the following.

Theorem 5. There is exactly one circle which connects a fixed chord AB and a fixed arc of

length p.

Proof. With the given arc AB we must complete the circle; that is, we must find its center and

radius. Pick a unique point on arc AB, call it C, and draw △ABC. Construct the perpendicular

bisectors of two sides of △ABC to find the center of the circle. This circle is unique, as the

perpendicular bisectors of the sides of the triangle are unique. [2] □

Steiner also introduced a new synthetic geometry term: the power of a point. This concept

is used often, including the Law of Cosines and a solution to Apollonius’s problem.

3.2 Apollonius’s problem

Apollonius of Perga posed a problem: construct circles that are tangent to three given circles in

a plane. He proved the construction but his original work was lost. What has survived are the

report of his results by Pappus of Alexandria.
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Statement (Generalized). Construct one or more circles that are tangent to three given objects

in a plane, where an object may be a line, a point, or a circle of any size. These objects may be

arranged in any way and may cross one another; however, they are usually taken to be distinct,

meaning that they do not coincide. [5]

Solutions to Appolonius’s problems are called Apollonius circles, but sometimes this label

is assigned to other circles associated with Apollonius.

3.3 Lord Kelvin

Sir William Thompson (Baron Kelvin) applied the isoperimetric property to economics and

land values. He noted that not all land is valued the same, so a greater acreage was not neces-

sarily more valuable. He used the isoperimetric property to maximize the area of valuable land

when delineating property lines and to more properly assess the value of land owned for tax

collection. [9]

3.4 Bees

Bees are perfect at economizing labor and wax.

Charles Darwin

Known since ±39 BCE and proved by Thomas Hales in 1999: hexagon is the most ef-

ficient way to fill space using a minimum amount of material while being able to enclose a

maximum amount of honey. [7]

3.5 Soap Bubbles

Soap bubble: maximize volume inside itself with a finite amount of soap; i.e., if you have a

given surface area, what’s the biggest volume you can make?
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3.6 Archimedes and Schwartz

Archimedes knew in 200 BCE that the sphere (or ball) has the greatest surface area for a fixed

volume. In 1884 Herman Schwartz published Proof of the theorem that the ball has less surface

area than any other body of the same volume.
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Chapter 4

Using the isoperimetric property

Thinking like a mathematician or scientist is not an innate skill.

4.1 Definitions

Note that these definitions refer specifically to planar bodies; that is to say, objects in 2-

dimensional Euclidean space.

A dense set of points with the properties that each is equidistant from a given point (O,

which is called the center) and each has a tangent is called a circle.

A set of points which extend in opposite directions indefinitely is called a line.

A set of points with one end that extends indefinitely in one direction is called a half line.

A curve is a continuous dense set of points, similar to a line but not necessarily straight; a

line is a straight curve. Alternately, the trace left by a moving point, or the image of an interval

to a plane by a continuous function.

A curve is smooth when it does not have any corners; alternately, when a curve is contin-

uously differentiable.

A curve that does not cross itself is called a Jordan curve. If it gets back to itself it is a

closed Jordan curve.

A line passing through two points of a curve is called a secant line. On a circle, the secant

line is known as a chord.
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A line which intersects a smooth curve at a single point is called a tangent line. Alternately,

the limiting secant line as the two points come together.

The point where a tangent line intersects a curve is called the point of tangency.

A line of support or support line contains at least one point of the disk while the rest of the

set of points of the disk exists on one side of it.

Any smooth curve joining two points is an arc. On a circle, an arc is a portion of the

circumference (perimeter) of the circle.

The part of a circle bounded by a chord and an arc is called a segment of a circle.

A sector of a circle is bounded by two radii and an arc.

A circular segment or cap (denoted J) is a region comprised of an arc ⌢AB of a circle

together with the line segment AB as its boundary.

The angle formed in the interior of a circle when two secant lines intersect on the circle is

an inscribed angle. An inscribed angle can also be described as the angle subtended at a point

on a circle by two given points on the circle; equivalently, it is defined by two chords of a circle

sharing an endpoint.
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4.2 Exercises

Exercise 1. Assume we have a line e and a number p > 0. Find two points A and B along

e and a Jordan curve length p connecting A and B such that the Jordan curve together with

segment AB encloses the largest area.

e
A B

p

Figure 1.1: Illustration for Exercise 1

Solution of Exercise 1. Here we achieve maximal area with endpoints A and B on line e form-

ing a semicircle.

We achieve this by reflecting the Jordan curve of length p to the other side of e to obtain a

closed Jordan Curve with perimeter length 2p. Consider the circle with radius r = p
π

, denoted

as C, with the line e coinciding with a diameter of C. The circle C has area AC = p2

π
, and by

the isoperimetric theorem, AC is greater than or equal to the area of the closed Jordan curve we

reflected, with equality only when the closed Jordan curve is exactly C.

As C is the optimal shape with perimeter length 2p, the semicircle with arc length p

together with the segment AB along e is the solution.

e
A B

p

Figure 1.2: Reflect across e

A
e

B

p

Figure 1.3: Expand into a semicircle
with endpoints A and B

■
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Exercise 2. Assume we have a segment AB and a number p > 0. Find the Jordan curve

connecting A and B of length p which together with the segment AB encloses the largest area.

A B

p

Figure 2.1: Illustration for Exercise 2

Solution of Exercise 2. Here we are going to show that a circular segment of length p with

fixed endpoints A and B has maximal area.

We begin with a general Jordan curve of length p with fixed endpoints A and B (see Fig.

2.2). Applying the isoperimetric theorem, we get a unique circle which connects the fixed

points A and B with arc length p (see Fig. 2.3).

A B

p

Figure 2.2: A general Jordan curve for Ex-
ercise 2

A B

p

Figure 2.3: Arc length p forming a circular
segment with fixed endpoints A and B

Now we will complete the circle corresponding to the arc of length p (see Fig. 2.4), copy

it, and paste it onto the general Jordan curve of length p (see Fig. 2.5).
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A B

r
O

α

p

p′

Figure 2.4: Complete the circle with p′

A B

p

p′

Figure 2.5: Arc length p forming a circular
segment with fixed endpoints A and B

■
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Exercise 3. Assume we have two half lines e and f starting at the same point O and perpendic-

ular, and a number p > 0. Find a point A on half line e, a point B on half line f , and a Jordan

curve of length p connecting A,B such that the Jordan curve together with the segments OA

and OB enclose the largest area.

e

f
O

A

B

p

Figure 3.1: Illustration for Exercise 3

Solution of Exercise 3. Here we are going to show that the sector of a circle centered at O

with interior angle 90◦ and subtended by an arc of length p connecting A and B has maximal

area.

We know that there is exactly one circle which connects the fixed points A and B with arc

length p, shown below with origin O. Reflect A and B such that we have four quadrants and

a closed shape of perimeter 4p, then expand the curve of length 4p into a circle centered about

the origin.

f

e

O

A

B

p

Figure 3.2: Reflect to quadrants

dum

dum text

f

e

O

p

Figure 3.3: Expand into a circle

28



Now we have that the sector of a circle centered at O with interior angle π
2

and subtended

by an arc of length p connecting A and B is equal to 1
4

the area of the circle with perimeter 4p.

When we arrange the points A,B on e, f , respectively, such that ⌢AB of length p forms

a one-quarter sector we get maximal area. ■
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Exercise 4. Assume we have two half lines e and f starting at the same point O and creating

a 60◦ angle, and a number p > 0. Find a point A on half line e, a point B on half line f , and a

Jordan curve of length p connecting A,B such that the Jordan curve together with the segments

OA and OB enclose the largest area.

e

f

A

B
O

π
3

p

Figure 4.1: Illustration for Exercise 4

Solution of Exercise 4. Here we are going to show that the sector of a circle centered at O

with interior angle π
3

and subtended by an arc of length p connecting A and B has maximal

area.

First reflect 5 times to achieve a closed region of perimeter 6p (see Fig. 4.2). Then apply

the isoperimetric theorem which results in a circle (see Fig. 4.3).

e

f
O B

A
p

Figure 4.2: Reflect to make six parts

dum

dum text

e

f
O

A

B

p

Figure 4.3: Expand the closed Jordan
curve into a circle

When we arrange the points A,B on e, f , respectively, such that ⌢AB of length p forms

a one-sixth sector we get maximal area. ■
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Exercise 5. Assume we have two half lines e and f starting at the same point O and creating

a fixed angle α, and a number p > 0. Find a point A on half line e, a point B on half line f ,

and a Jordan curve of length p connecting A,B such that the Jordan curve together with the

segments OA and OB enclose the largest area.

e

f

A

B
O α

p

Figure 5.1: Illustration for Exercise 5

Solution of Exercise 5. Here we are going to show that the sector of a circle with center O

with interior angle α and subtended by an arc of length p connecting A and B has maximal

area.

f

e

A

BO

α

p

Figure 5.2: AB is connected with a circular arc of length p

In view of Exercise 2, we can assume that the optimal region is bounded by a circular arc

AB (see Fig. 5.2). Fix points A and B in these positions to create △ABO and a circular sector.

We reorient △ABO and maintain the fixed angle AOB = α (see Fig. 5.3).
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AB

O

α

p

Figure 5.3: Triangle ABO and the circular sector AB with arc length p

The locus of points O with angle AOB = α is a circular arc. Clearly the midpoint of this

arc lies the largest distance from AB and △ABO is isosceles (see Fig. 5.4).

AB

O
O

α

p

Figure 5.4: Modified triangle ABO and the circular sector AB with length p

f

e

A

BO

O1α

β
C

r p

Figure 5.5: Circular arc of length p

We now have that the extremal must be isosceles. Using calculus, we get the largest area

when α = β.
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Referencing Figure 5.5, denote the central angle corresponding to ⌢AB by β. Let O1 be

the center of this circle. If OA = OB, then the center O1 lies on the angle bisector of the angle

AOB. As the distance OA = OB increases, the length of the segment AB increases and β

decreases. It is clear that β is largest when O1A is perpendicular to OA. In this case β = π+α,

thus 0 < β ≤ π + α.

Express the area of the enclosed region in terms of β. We will differentiate this expression

in β and show that α is the only place where the derivative is equal to zero, meaning, β = α is

the only critical number of the function and hence the maximum.

Let r be the radius O1A and let C be the midpoint of AB. Notice that r =
p

β
, AC =

r sin
β

2
, O1C = r cos

β

2
, therefore the area between the chord AB and the circular arc AB is

equal to
β

2π

(
p

β

)2

π − r2 sin
β

2
cos

β

2
,

and the area of △OAB is equal to
(
p

β

)2

sin2 β

2
cot

α

2
.

We need to maximize the area of the region which is enclosed by the segments OA, OB

and the arc AB, which is a function f(β).

f(β) =
p2

2β
− p2

β2

1

2
sin β +

p2

β2
sin2 β

2
cot

α

2

By simple differentiation we get the following.

f ′(β) = p2

2

(
− 1

β2 − cosβ·β2−sinβ·2β
β4 +

2 cot α
2
·(sin β

2
·cos β

2
·β−sin2 β

2
·2β)

β4

)
= p2

2

−β−β cosβ+2 sinβ+2 cot α
2
·( 1

2
sinβ·β−2 sin2 β

2 )
β3

Now we check that β = α is a critical number.

f ′(α) =
p2

2

−α− α cosα + 2 sinα + cot α
2
· sinα · α− 4 cot α

2
· sin2 α

2

α3

We make note that the third term in the numerator simplifies to 2 cos2 α
2
· α and the fourth

term simplifies to −2 sinα, thus f ′(α) = 0.
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f ′(α) =
p2

2

α(−1− cosα + 2 cos2 α
2
)

α3
= 0

Lastly, we need to check that f(β) increases for β < α and decreases for β > α. First we

show that the derivative of f ′(β) is positive on the interval 0 < β < α. Since p2

2β3 is positive, it

suffices to show that

−β − β cos β + 2 sin β + 2 cot
α

2
·
(
1

2
sin β · β − 2 sin2 β

2

)
> 0.

Closer inspection of this expression reveals that the coefficient of cot α
2

is negative.

1

2
sin β · β − 2 sin2 β

2
= sin

β

2
·
(
cos

β

2
· β − 2 sin

β

2

)
= 2 sin

β

2
cos

β

2

(
β

2
− tan

β

2

)

In this product the first two terms are positive, but the third term is negative, which shows

that the coefficient of cot α
2

is negative. Now we rearrange the terms in f ′(β) and state that

checking whether f ′(β) is positive on the interval 0 < β < α is equivalent to checking, on the

same interval, whether

cot
α

2
<

1

2
· β + β cos β − 2 sin β

1
2
sin β · β − 2 sin2 β

2

.

It was already proved that this inequality becomes an equation if α is replaced with β.

Since cot(x) is a decreasing function, the above inequality is true, which we intended to show.

The exact same argument also shows that f ′(β) decreases if α > β, which completes the

solution of Exercise 5.

f

e

A

BO

α = β

p

Figure 5.6: Maximal area solution

■
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Exercise 6. Assume we have a unit equilateral triangle △ABC and a number 1 < p < 2. Find

the Jordan curve of length p connecting A,B such that the Jordan curve together with the edge

AB encloses the largest area and where the Jordan curve stays within the bounds of △ABC.

A B

C

1

11 p

Figure 6.1: Illustration for Exercise 6

Solution of Exercise 6. Here we will show that the maximal area formed by the Jordan curve

of length p connecting A and B together with edge AB is either a circular arc or a line segment-

arc-line segment, where the line segments are of equal length and coincide with two edges of

the triangle. The case where ⌢AB together with edge AB meet the stated conditions is trivial

as it is the case of Exercise 2.

Otherwise, we use the result of Demar (Theorem 4) to obtain a line segment-arc-line

segment Jordan curve of length p which together with edge AB has maximal area. Applying

the isoperimetric theorem and the result of Demar, we obtain line segments AA′ and BB′ on

edges AC and BC, respectively, having the property AA′ = BB′. We also have ⌢A′B′ , a

circular arc.

A B

C

ab

A′ B′
p

Figure 6.2: The Jordan curve is capped inside △ABC

When we arrange A′ on b and B′ on a such that we achieve a segment-arc-segment for the

Jordan curve we get maximal area. ■
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Exercise 7. Assume we have a unit equilateral triangle △ABC, its incirlce of perimeter π√
3
,

and a number π√
3
< p < 3. Find the closed Jordan curve of length p which encloses the largest

area and stays within the bounds of △ABC.

A B

C

p

Figure 7.1: Illustration for Exercise 8

Solution of Exercise 7. Here we will show that the maximal area is obtained from the closed

Jordan curve of length p with the properties: there is a line segment coinciding with each of the

edges of △ABC, each of these segments has its midpoint at the same point as the midpoint of

its coinciding edge, each line segment is connected to the other two by a circular arc, and each

of these circular arcs have the same radius.

We use the result of Demar (Theorem 4) together with the isoperimetric theorem to obtain

line segments A1A2, B1B2, and C1C2 along edges A, B, and C, respectively. From Demar we

get AB2 = AC1 = BC2 = BA1 = CA2 = CB1, isosceles caps near each corner, which are

circular arcs of the same radius and arc length, and the closed Jordan curve does not contain

any corner of △ABC.

A B

C

A1

A2B1

B2

C1 C2

p

Figure 7.2: Extremal solution

■
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Exercise 8. Assume we have a triangle △ABC with incircle perimeter length pi and a number

pi < pj < AB+BC +CA. Find the Jordan curve of length pj which encloses the largest area

and stays within the bounds of △ABC.

A B

C

p

Figure 8.1: Illustration for Exercise 9

Solution of Exercise 8.

Theorem 6. Given a triangle △ABC with incircle perimeter length pi and a number pi < pj <

AB + BC + CA. The Jordan curve, γ, of length pj which encloses the largest area and stays

within the bounds of △ABC has the following properties:

Lemma 1.1. No vertices of △ABC are included in γ.

Lemma 1.2. The parts of γ that are not coincident to △ABC are circular arcs.

Lemma 1.3. The circular arcs of γ have the same radius.

Lemma 1.4. The edges of △ABC are tangent to the circular arcs of γ.

Proof. Let γ be the boundary of a solution and pj the length of γ.

Proof of Lemma 1. First note that we cannot have all three corners of △ABC in γ as γ has

length pj which is strictly less than AB + BC + CA. Then there is at least one corner not

included. Without loss of generality, suppose corner B is not in γ and corner C is in γ.

We take a small part of γ at C and move it to a part of γ near B. This cut is sufficiently

small and its placement is such that γ remains inside the bounds of △ABC. The area and

perimeter length are preserved but we have a shape that is nonconvex. Hence, a shape which

includes a corner can not be the solution, so no corners of △ABC are in the extremal.
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Figure 8.2: One corner not on γ

p

Figure 8.3: Cut and replace

p

Image credits: [4] ▲

Proof of Lemma 2. We cite Theorem 3 (Demar) that the extremal is a circular region. Thus,

the parts of γ not coinciding with △ABC are circular arcs. ▲

Proof of Lemma 3. Suppose the circular arcs at B and C have different radii and let the radius

of the arc at B be greater than the radius of the arc at C. We cut equal lengths of these arcs and

replace them with the other. Area and perimeter length are preserved. The replacements result

in a nonconvex. Therefore, each of the circular arcs must have the same radius

Figure 8.4: Cut and replace

p

Image credits: [4] ▲

Proof of Lemma 4. Suppose that γ is not tangent to △ABC near B. We cite Theorem 4 (De-

mar) to show that this orientation of γ is not extremal. Therefore, the circular arcs must be

tangent to △ABC where each arc meets △ABC. ▲

Thus, it must be the case that each of these four properties are properties of the extremal.

■
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Appendix A

Notes on the history of the isoperimetric problem and Jakob Steiner

Mathematical intelligence is neither necessary nor
sufficient to deal with the trials and tribulations of the heart.

Richard Tapia

The motivation for chapters 1 and 2 came from my research on the isoperimetric property,
trying to find a primary source for Steiner’s proof. I found numerous books, articles, and other
materials that were structured in the same way but (a) did not contain a concise, structured
begin and end of proof and (b) did not cite either Steiner or Weierstrass. It appeared as if the
proof by Steiner was some kind of mythology or folklore.

I had the mathematics subject librarian, Patrician Hartman, in on this hunt as well. She
and I both had difficulty finding the material, and when we did find it we had difficulty finding
an English translation (or any language besides the original German). It was baffling to me,
as a liberal-arts-trained researcher, that no one ever cited a primary source yet everyone had
mostly the same things to say regarding this proof.

I was determined to find my primary source, and to find it in English. When Hartman and
I were certain that it was not available in English anywhere, I spent untold hours with Google
Translate creating my own. The translation of the full paper appears in Appendix C. The history
of the isoperimetric problem was not intended to be part of this thesis when we began. It wasn’t
what we originally set out to do, but research evolves in its own way.

There is much irony in this quote from the opening paragraph of Steiner’s paper:

Unfortunately, [Lhulier’s] work seems to have been quoted more often than the
prevailing method has been correctly understood or duly appreciated and followed;
for all his successors have deviated more or less from his simple, natural way
of looking at things – apart from the fact that they also limited themselves to a
much smaller number of tasks and propositions, – which also means the beautiful
simplicity of the proofs, the intimate connection, to the same extent the sentences
together with their inner reasoning disappeared.
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